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Abstract 

This paper attempts to study Cospectral graph  and the properties of a graph in relationship to the characteristic 

polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian 

matrix.  Two graphs are called cospectral or isospectral if the adjacency matrices of the graphs are isospectral, that is, if 

the adjacency matrices have equal multisets of eigenvalues. The Laplacian matrix, sometimes also called the admittance 

matrix (Cvetković et al. 1998, Babić et al. 2002) or Kirchhoff matrix, of a graph , where  is an undirected, 

unweighted graph without graph loops  or multiple edges from one node to another,  is the vertex set, , 

and  is the edge set, is an  symmetric matrix with one row and column for each node defined by 

 

 

where  is the degree matrix, which is the diagonal matrix formed from the vertex 

degrees and  is the adjacency matrix. The diagonal elements  of  are therefore equal the degree of vertex  and off-

diagonal elements  are  if vertex  is adjacent to  and 0 otherwise. 

A normalized version of the Laplacian matrix, denoted , is similarly defined by 

 

(2) 

The Laplacian matrix is a discrete analog of the Laplacian operator in multivariable calculus and serves a similar 

purpose by measuring to what extent a graph differs at one vertex from its values at nearby vertices. The Laplacian matrix 

arises in the analysis of random walks and electrical networks on graphs (Doyle and Snell 1984), and in particular in the 

computation of resistance distances. The Laplacian also appears in the matrix tree theorem. 
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Introduction  

 

 

Cospectral graphs, also called isospectral graphs, are graphs that share the same graph spectrum. The smallest pair of 

isospectral graphs is the graph union  and star graph , illustrated above, both of which have graph 

spectrum  (Skiena 1990, p. 85). The first example was found by Collatz and Sinogowitz (1957) (Biggs 1993, 

p. 12). Many examples are given in Cvetkovic et al. (1998, pp. 156-161) and Rücker et al. (2002). The smallest pair of 

cospectral graphs is the graph union  and star graph , illustrated above, both of which have graph 

spectrum  (Skiena 1990, p. 85). 

The following table summarizes some prominent named cospectral graphs. 

 

cospectral graphs 

12 6-antiprism graph, quartic vertex-transitive graph Qt19 

16 Hoffman graph, tesseract graph 

16 (4,4)-rook graph, Shrikhande graph 

25 25-Paulus graphs 

26 26-Paulus graphs 

28 Chang graphs, 8-triangular graph 

70 Harries graph, Harries-Wong graph 

Determining which graphs are uniquely determined by their spectra is in general a very hard problem. Only a small 

fraction of graphs are known to be so determined, but it is conceivable that almost all graphs have this property (van Dam 

and Haemers 2003). 

The total number of -node simple graphs that are isospectral to at least one other graph on  nodes for , 2, ... are 0, 

0, 0, 0, 1, 6, 110, 1722, 51039, ... (OEIS A099883). The numbers of pairs of isospectral simple graphs (excluding pairs 

that are parts of triples, etc.) are 0, 0, 0, 0, 1, 5, 52, 771, 21025, ... (OEIS A099881). Similarly, the numbers of triples of 

isospectral graphs (excluding triples that are parts of quadruples, etc.) are 0, 0, 0, 0, 0, 0, 2, 52 

http://www.jetir.org/


© 2020 JETIR December 2020, Volume 7, Issue 12                                                          www.jetir.org (ISSN-2349-5162) 

JETIR2012388 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1433 
 

A connected graph on  nodes satisfies 

 

where  is the vertex degree of vertex  (and where the inequality can be made strict except in the case of the singleton 

graph ). However while this condition is necessary for a graph to be connected, it is not sufficient; an arbitrary graph 

satisfying the above inequality may be connected or disconnected. 

The number of -node connected unlabeled graphs for , 2, ... are 1, 1, 2, 6, 21, 112, 853, 11117, 261080, ... 

(OEIS A001349). The total number of (not necessarily connected) unlabeled -node graphs is given by the Euler 

transform of the preceding sequence, 1, 2, 4, 11, 34, 156, 1044, 12346, ... (OEIS A000088; Sloane and Plouffe 1995, 

p. 20). Furthermore, in general, if  is the number of unlabeled connected graphs on  nodes satisfying some property, 

then the Euler transform  is the total number of unlabeled graphs (connected or not) with the same property. This 

application of the Euler transform is called Riddell's formula. 

The numbers of connected labeled graphs on -nodes are 1, 1, 4, 38, 728, 26704, ... (OEIS A001187), and the total number 

of (not necessarily connected) labeled -node graphs is given by the exponential transform of the preceding sequence: 1, 

2, 8, 64, 1024, 32768, ... (OEIS A006125; Sloane and Plouffe 1995, p. 19). 

 

Objective: 

This paper intends to explore and analyze set of graphs  called cospectral graphs, with their adjacency matrices that 

must have the same characteristic polynomial also distinct characteristic polynomials, and number of graphs with 

a cospectral mate for the adjacency matrix 

Spectral graphs  

Spectral graph theory deals with the relation between the structure of a graph and the eigenvalues (spectrum) of an 

associated matrix, such as the adjacency matrix A and the Laplacian matrix L. Important types of relations are the spectral 

characterization. These are conditions in terms of the spectrum of A or L, which are necessary and sufficient for certain 

graph properties. Two famous examples are: (i) a graph is bipartite if and only if the spectrum of A is invariant under 

multiplication by −1, and (ii) the number of connected components of a graph is equal to the multiplicity of the eigenvalue 

0 of L. Properties that are characterized by the spectrum for A as well as for L are the number of vertices, the number of 

edges, and regularity. If a graph is regular, the spectrum of A follows from the spectrum of L, and vice versa. This implies 

that for both A and L the properties of being regular and bipartite, and being regular and connected are characterized by 

the spectrum. The vertex-connectivity κ(Γ) of a graph Γ is the minimum number of vertices one has to delete from Γ such 

that the graph becomes disconnected. The edgeconnectivity κ ′ (Γ) is the minimum number of edges one has to delete 

from Γ to make the graph disconnected. One easily has that κ(Γ) ≤ κ ′ (Γ) ≤ δ(Γ) where δ(Γ) is the minimal degree of Γ. 

Clearly, κ(Γ) = 0 as well as κ ′ (Γ) = 0 just means that Γ is disconnected, therefore these two properties are characterized 
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by the spectrum when Γ is regular. Fiedler [6] showed that the second smallest eigenvalue of the Laplacian matrix L 

(called the algebraic connectivity) is a lower bound for the vertex- (and edge-) connectivity. For a regular graph Γ there 

exist stronger spectral bounds for κ(Γ) (see [1]) and κ ′ (Γ) (see [4]). Here we show that for the vertex- and for the edge-

connectivity in a connected regular graph there is in general no spectral characterization. For k ≥ 2 we present a pair of 

regular cospectral graphs Γ and Γ′ of degree 2k and order 6k, where κ(Γ) = 2k and κ(Γ′ ) = k+1. The edge-connectivity 

turned out to be much harder. Nevertheless, for every even k ≥ 4 we found a pair of regular cospectral graphs Γ and Γ′ of 

degree 3k − 5, where κ ′ (Γ) = 3k − 5 and κ ′ (Γ′ ) = 3k − 6. 

The set of graph eigenvalues of the adjacency matrix is called the spectrum of the graph. (But note that in physics, the 

eigenvalues of the Laplacian matrix of a graph are sometimes known as the graph's spectrum.) The spectrum of a 

graph  with -fold degenerate eigenvalues  is commonly denoted  (van Dam and Haemers 

2003) or  (Biggs 1993, p. 8; Buekenhout and Parker 1998). 

 

spectrum of a graph 

The product  over the elements of the spectrum of a graph  is known as the characteristic polynomial of , 

and is given by the characteristic polynomial of the adjacency matrix of  with respect to the variable . 

The largest absolute value of a graph's spectrum is known as its spectral radius. 

The spectrum of a graph may be computed in the Wolfram Language using Eigenvalues[AdjacencyMatrix[g]]. 

Precomputed spectra for many named graphs can be obtained using GraphData[graph, "Spectrum"]. 

A graph whose spectrum consists entirely of integers is known as an integral graph. 

The maximum vertex degree of a connected graph  is an eigenvalue of  iff  is a regular graph. 

Two nonisomorphic graphs can share the same spectrum. Such graphs are called cospectral. There seems to be no standard 

name for graphs known to be uniquely determined by their spectra. While they could conceivably be called spectrally 

unique, the term "determined by spectrum" has been used in practice (van Dam and Haemers 2003). 

 

Two nonisomorphic graphs can share the same graph spectrum, i.e., have the same eigenvalues of their adjacency 

matrices. Such graphs are called cospectral. For example, the graph union  and star graph , illustrated above, 

both have spectrum  (Skiena 1990, p. 85). This is the smallest pair of simple graphs that are cospectral. 

Determining which graphs are uniquely determined by their spectra is in general a very hard problem. 
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Only a small fraction of graphs are known to be so determined, but it is conceivable that almost all graphs have this 

property (van Dam and Haemers 2002). 

In the Wolfram Language, graphs known to be determined by their spectra are identified 

as GraphData["DeterminedBySpectrum"]. 

The numbers of simple graphs on , 2, ... nodes that are determined by spectrum are 1, 2, 4, 11, 32, 146, 934, 10624, 

223629, ... (OEIS A178925), while the corresponding numbers not determined by spectrum are 0, 0, 0, 0, 2, 10, 110, 1722, 

51039, 2560606, ... (OEIS A06608). 

Graphs that are known to be uniquely determined by their spectra include complete graphs , regular complete bipartite 

graphs , cycle graphs, triangular graphs for , and the rook graphs  for  (Haemers 2006). In addition, 

the Coxeter graph, Biggs-Smith graph, collinearity graphs of the generalized octagons of orders , , and , 

the generalized dodecagon , the M22 graph, and the coset graphs of the doubly truncated binary Golay code and the 

extended ternary Golay code are determined by their spectra (van Dam and Haemers 2003b). 

The complement of a distance-regular graph that is determined by its spectrum is also determined by its spectrum (van 

Dam and Haemers 2003b). The disjoint union of multiple copies of a strongly regular determined-by-spectrum graph is 

also determined by spectrum (van Dam and Haemers 2003b). 

An infinite family of determined-by-spectrum graphs is given by , which is , 

where  is the  unit matrix,  denotes the Kronecker product of adjacency matrices (van Dam and Haemers 2003b), 

and 1, 4, 6, 9, 11, ... (OEIS A047209) is the sequence of positive integers that are congruent to 1 and 4 (mod 5). 

Graphs that are not determined by their spectra include the rook graph  and Shrikhande graph, tesseract 

graph  and Hoffman graph, triangular graph  and Chang graphs, and the 25- and 26-Paulus graphs. 

The Hoffman graph is the bipartite graph on 16 nodes and 32 edges illustrated above that is cospectral to the tesseract 

graph  (Hoffman 1963, van Dam and Haemers 2003).  and the Hoffman graph are therefore not determined by their 

spectrum. Its girth, graph diameter, graph spectrum, and characteristic polynomial are the same as those of , but 

its graph radius is 3 compared to the value 4 for . 

The Hoffman graph has adjacency matrix given by 

 

where 
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The Hoffman graph is an integral graph with graph spectrum . 

 

 

Laplacian matrix 

Spectral graph theory examines relationships between the structure of a graph and the eigenvalues (or spectrum) of a 

matrix associated with that graph. Different matrices are able to give different information, but all the common matrices 

have limitations. This is because there are graphs which have the same spectrum for a certain matrix but different 

structure–such graphs are called cospectral with respect to that matrix [4]. 

Cospectral graphs for the adjacency matrix (see for example [8,10,11,12,13]) and the Laplacian matrix (see for example, [12,17,19]) 

have been studied extensively, particularly for graphs with few vertices. But little is also known about cospectral graphs 

with respect to the normalized Laplacian since the normalized Laplacian is a rather new tool which has rather recently 

(mid 1990's) been popularized by Chung [7]. One of the original motivations for defining the normalized Laplacian was to 

be able to deal more naturally with non-regular graphs. In some situations the normalized Laplacian is a more natural tool 

that works better than the adjacency matrix or Laplacian matrix. In particular, when dealing with random walks, the 

normalized Laplacian is a natural choice. This is because D(G)−1A(G)D(G)−1A(G) is the transition matrix of a Markov 

chain which has the same eigenvalues as I−L(G)I−L(G). Previously, the only cospectral graphs with respect to normalized 

Laplacian were bipartite (complete bipartite graphs [19] and bipartite graphs found by "unfolding" a small bipartite graph 

in two ways [3]). Some recent studies on cospectral graphs were carried out in [1,2,5,6,14,15,16,18]. 

 

Conclusion 

Construction of non-isomorphic cospectral graphs is a nontrivial problem in spectral graph theory especially for large 

graphs. In this paper, we establish that graph theoretical partial transpose of a graph is a potential tool to create non-

isomorphic cospectral graphs by considering a graph as a partitioned graph. Two non-isomorphic graphs are said to be 

cospectral with respect to a given matrix if they have the same eigenvalues. Cospectral graphs help to show the limitations 

that the spectrum of a particular matrix might have in distinguishing properties of a graph. There are several different 

matrices that are used in spectral graph theory, and these different matrices can reveal different information about a graph. 

So graphs may be cospectral with respect to some matrix but not cospectral with respect to another matrix (though there 

are graphs which are cospectral with respect to all matrices). Some of the common matrices that are studied include the 
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adjacency matrix A, the combinatorial Laplacian L := D − A, the signless Laplacian Q := D + A, the normalized Laplacian 

L := D−1/2 (D − A)D−1/2 (with the convention that if a vertex is isolated then the corresponding entry id D−1/2 is 0), and 

the Seidel matrix S := J − I − 2A. The Seidel matrix is not as commonly studied and is defined by putting a −1 for each 

edge, a 1 for each non-edge, and a 0 on the diagonal entries. 

References 

1. Theorem 2.4 in Hoory, Linial & Widgerson (2006) 

2.  Chung, Fan (1997). American Mathematical Society (ed.). Spectral Graph Theory. Providence, R. I. ISBN 

0821803158. MR 1421568[first 4 chapters are available in the website] 

3.  Godsil, Chris (May 2009). "Erdős-Ko-Rado Theorems" (PDF). 

4.  1949-, Godsil, C. D. (Christopher David) (2016). Erdős-Ko-Rado theorems : algebraic approaches. Meagher, 

Karen (College teacher). Cambridge, United Kingdom. ISBN 9781107128446. OCLC 935456305. 

5.  Eigenspaces of Graphs, by Dragoš Cvetković, Peter Rowlinson, Slobodan Simić (1997) ISBN 0-521-57352-1 

6.  Dragoš M. Cvetković, Michael Doob, Horst Sachs, Spectra of Graphs (1980) 

7.  Cvetković, Dragoš M.; Doob, Michael; Gutman, Ivan; Torgasev, A. (1988). Recent Results in the Theory of Graph 

Spectra. Annals of Discrete mathematics. ISBN 0-444-70361-6. 

8.  Sunada, Toshikazu (2008), "Discrete geometric analysis", Proceedings of Symposia in Pure Mathematics, 77: 51–

86, doi:10.1090/pspum/077/2459864, ISBN 9780821844717. 

9.  Shuman, David I; Ricaud, Benjamin; Vandergheynst, Pierre (March 2016). "Vertex-frequency analysis on graphs". 

Applied and Computational Harmonic Analysis. 40 (2): 260–291. arXiv:1307.5708. 

doi:10.1016/j.acha.2015.02.005. ISSN 1063-5203. 

10.  Stankovic, Ljubisa; Dakovic, Milos; Sejdic, Ervin (July 2017). "Vertex-Frequency Analysis: A Way to Localize 

Graph Spectral Components [Lecture Notes]". IEEE Signal Processing Magazine. 34 (4): 176–182. 

Bibcode:2017ISPM...34..176S. doi:10.1109/msp.2017.2696572. ISSN 1053-5888. 

11.  Sakiyama, Akie; Watanabe, Kana; Tanaka, Yuichi (September 2016). "Spectral Graph Wavelets and Filter Banks 

With Low Approximation Error". IEEE Transactions on Signal and Information Processing over Networks. 2 (3): 

230–245. doi:10.1109/tsipn.2016.2581303. ISSN 2373-776X. 

12.  Behjat, Hamid; Richter, Ulrike; Van De Ville, Dimitri; Sornmo, Leif (2016-11-15). "Signal-Adapted Tight Frames 

on Graphs". IEEE Transactions on Signal Processing. 64 (22): 6017–6029. Bibcode:2016ITSP...64.6017B. 

doi:10.1109/tsp.2016.2591513. ISSN 1053-587X. 

13. Bender, Edward A.; Williamson, S. Gill (2010). Lists, Decisions and Graphs. With an Introduction to Probability. 

14. Claude, Claude (1958). Théorie des graphes et ses applications. Paris: Dunod. English edition, Wiley 1961; 

Methuen & Co, New York 1962; Russian, Moscow 1961; Spanish, Mexico 1962; Roumanian, Bucharest 1969; 

Chinese, Shanghai 1963; Second printing of the 1962 first English edition, Dover, New York 2001. 

15. Biggs, N.; Lloyd, E.; Wilson, R. (1986). Graph Theory, 1736–1936. Oxford University Press. 

16. Bondy, J. A.; Murty, U. S. R. (2008). Graph Theory. Springer. ISBN 978-1-84628-969-9. 

17. Bollobás, Béla; Riordan, O. M. (2003). Mathematical results on scale-free random graphs in "Handbook of Graphs 

and Networks" (S. Bornholdt and H.G. Schuster (eds)) (1st ed.). Weinheim: Wiley VCH. 

18. Chartrand, Gary (1985). Introductory Graph Theory. Dover. ISBN 0-486-24775-9. 

http://www.jetir.org/


© 2020 JETIR December 2020, Volume 7, Issue 12                                                          www.jetir.org (ISSN-2349-5162) 

JETIR2012388 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1438 
 

19. Deo, Narsingh (1974). Graph Theory with Applications to Engineering and Computer Science (PDF). Englewood, 

New Jersey: Prentice-Hall. ISBN 0-13-363473-6. 

20. Gibbons, Alan (1985). Algorithmic Graph Theory. Cambridge University Press. 

21. Reuven Cohen, Shlomo Havlin (2010). Complex Networks: Structure, Robustness and Function. Cambridge 

University Press. ISBN 9781139489270. 

22. Golumbic, Martin (1980). Algorithmic Graph Theory and Perfect Graphs. Academic Press. 

23. Harary, Frank (1969). Graph Theory. Reading, Massachusetts: Addison-Wesley. 

24. Harary, Frank; Palmer, Edgar M. (1973). Graphical Enumeration. New York, New York: Academic Press. 

25. Mahadev, N. V. R.; Peled, Uri N. (1995). Threshold Graphs and Related Topics. North-Holland. 

26. Newman, Mark (2010). Networks: An Introduction. Oxford University Press. 

27. Kepner, Jeremy; Gilbert, John (2011). Graph Algorithms in The Language of Linear Algebra. Philadelphia, 

Pennsylvania: SIAM. ISBN 978-0-898719-90-1. 

http://www.jetir.org/

